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The inviscid centrifugal instability of slowly varying flows is shown to be asymptotic- 
ally associated with the lowest-order spatial dependence of the basic flow satisfying 
Rayleigh’s criterion. This result requires special attention for basic flows which 
reverse their direction. At the instant of reversal the growth rate of the disturbance 
bifurcates and the choice of the proper branch requires that viscous effects be taken 
into account within a conveniently small neighbourhood of the branch point. Previous 
results by Rosenblat (1968) are shown to be incorrect. Such results were based on 
overlooking the need for viscous effects to be accounted for within a neighbourhood 
of the bifurcation point. This led to a wrong choice of the path to be followed at  
bifurcation. 

1. Introduction 
The aim of the present paper is twofold. First, it is intended to examine the centri- 

fugal instability of unsteady flows for large values of the Taylor number T. The idea 
is to extend Rayleigh’s criterion, in an asymptotic sense, to a class of such flows. 
Attention is focused on slow variation with time. This is because an extension of 
the above criterion appears to be relevant under those unsteady conditions where the 
overall stability is essentially controlled by an integrated effect of the instantaneous 
stability characteristics. The analysis is specially aimed at  the case of slowly varying 
periodic flows with zero mean. These flows, represented by series expansions in powers 
of a ‘small’ characteristic frequency, reduce at lowest order to the class of flows 
called ‘ rigid-body oscillations ’ by Rosenblat ( 1968). The stability analysis performed 
by this author led him to conclude that ‘rigid-body oscillations’ are always linearly 
and inviscidly stable. However he pointed out that his analysis cannot be expected 
to hold at low frequencies owing to the large growth which disturbances undergo 
during the growing part of the cycle, which takes the instability process outside the 
range of validity of a linear theory. The above results were then used by Rosenblat 
(1  968) to study the inviscid centrifugal instability of more general unsteady flows by 
means of perturbation expansions based on the ‘ rigid-body oscillation ’ case. 

Rosenblat’s (1968) analysis and his conclusions about the linear inviscid stability 
of ‘rigid-body oscillations’ will be shown to be different from the present results. 
Indeed we find that Rayleigh’s criterion applied to the lowest-order spatial dependence 
of slowly varying cylinder flows essentially controls their instability. The discrepancy 
between the above conclusions and Rosenblat’s (1968) findings seems to be due not 
to the role of nonlinear effects but rather to an improper choice of the branch of the 
eigenvalue (the growth rate of the disturbance) at  the branch point which occurs 
when the basic flow reverses its direction. Such a choice cannot be made within the 
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inviscid scheme. Consideration of the full viscous problem is required within a con- 
venient neighbourhood of the branching instant ?, where r is a non-dimensional time 
variable based on the characteristic period of the basic flow. The matching between the 
inviscid and viscous solutions determines the proper path to be chosen. 

Second, the above ideas are applied to the analysis of the linear stability of purely 
oscillatory slowly varying flows between coaxial cylinders. The inner (viscous) solution 
is obtained in much the same way as in Seminara & Hall (1 975). 

2. Analysis 
Consider the flow of an incompressible fluid in the region R, < r < R,, 0 < 8 < T ,  

-m < Z < co, with ( r ,8 ,2 )  cylindrical polar co-ordinates and r = R, and r = R, 
rigid walls. Let ( U * ,  V* ,  W*)  denote the corresponding velocity vector, v the kine- 
matic viscosity and t * time (a star will denote dimensional quantities). 

Let us examine purely azimuthal basic velocity fields described by the velocity 
vector (0, 8*(r ,  t*), 0). Furthermore let us assume the flow to be forced by external 
causes (the rotation of either wall around the axis of the cylinders, or the action of an 
azimuthal pressure gradient, or some combination of the two) whose time dependence 
is described by a continuous function S ( w t * )  with 

(T w(R, - R,)'/v < 1. (1) 

Under such conditions 8* can be given the following asymptotic representation in 
terms of g: 

m 

n=O 
8* = V,* c Vn([)Pn(ut*)dn, 

where V,* is a characteristic speed and 

6 = ( y - R l ) / ( R 2 -  Rl), Po(wt* )  = S(d*). (3) 

The set of functions Vn([) can be obtained by solving a system of ordinary differential 
equations defined in the interval (0 , l )  with suitable boundary conditions. 

Let us now consider the linear stability of such basic velocity fields against three- 
dimensional rotationally symmetric disturbances described by the velocity vector 
(u*, v*, w*), which we scale such that 

(u*,v*, w*)  = (~ /2d ,  V,*, ~ / 2 d )  (.ii,G,.it) (d = R,- R1). (4) 

Furthermore let us restrict ourselves to a class of disturbances amenable to a 
classical normal-mode analysis. Thus let us set 

{ ( u , ~ ,  w)eiaz+c.c.}da, (5) 

where b.c. denotes 'complex conjugate', 

z = Z/d (6) 

and a is a non-dimensional wavenumber. If the disturbed flow is substituted into 
the equations of motion written in non-dimensional form, after linearization and the 
usual manipulations we obtain 
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where 
u = au/a< = v = 0 (6 = 0, l) ,  (7c) 

a n d 9  is the operator 3 with a/a<replaced by d/d& 

‘ Inviscid ’ (outer) solution 

Let us now consider the ‘inviscid’ limit T 4 - t ~  with a, B and 6 fixed. Under such 
conditions an ‘inviscid’ balance is expected to hold between centrifugal effects and 
local acceleration. Such a balance requires the perturbations to undergo variations 
(growth or decay) whose time scales are O(T4), i.e. much shorter than that associated 
with the basic flow. Thus taking the limit T4 -+ 00 makes the basic flow slowly varying 
in some sense regardless of its actual frequency B .  An asymptotic approach of the 
WKB type proves convenient. Thus we consider the following expansions: 

When these expansions are substituted into ( 7 )  and like powers of T-4 are equated, 
the leading-order problem for (uf), v f ) )  is found to depend parametrically on 7.  Thus 
its solution can be determined only up to an arbitrary multiplying function of 7,  i.e. 

(u f ) ,  vg))  = A(7) (ff’(c; a, 7 ,  B ) ,  g f ) ( c ;  a, 7 ,  B ) ) .  (10) 

Experience of the WKB approach suggests that the ‘amplitude function’ A(7) is 
determined by the solvability condition for the O(T-3) inhomogeneous ordinary 
differential system for (ul, vl). This condition can be shown (see Seminara & Hall 
1975) to lead to a first-order homogeneous ordinary differential equation for A(7) 
whose solution is of the form exp ( - 1 H ( 7 )  d7),  where H ( 7 )  is expressed in terms of the 
pair of functions (ff), g t ) ) ,  its adjoint (fo+(i), g$(t9) and the parameters a, 7 and B.  Thus 
the contribution to the solution (9) due to A(7)  is equivalent to’ an O(T-4) correction 
for the growth rate - iR(”. For the purposes of the present analysis it suffices to limit 
ourselves to the consideration of the lowest-order effects. Thus the influence of A(7) 
will be neglected in the following. 

Furthermore the class of basic flows considered here (U 4 1)  is such that the per- 
turbations evolve even faster than (9) suggests. 

Indeed, as B - + O  ( 7 a , b )  show that -iCW = O ( B - ~ ) .  Let us consider, then, the 
further limit U+ 0 and expand (f,’s, 927, - i C P )  in the form 

On substituting from ( 1  1) into the O(T-4)O differential problem for (ff), g$2, - 
and equating powers of order o-O, we find 
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Mfoo + ~ a ~ { F / Q p } 2 v 0 9 v o f o o  = 0, 

( - iQd"') goo + ~S9"trOfOO = 0, 

(12a) 

(12b) 

t o o  = 0 (6 = 0, 1) .  ( 124  

The differential system (12) poses an eigenvalue problem for - ia$) parametrically 
dependent on 7.  However, the 7 dependence of - iQ$) is easily found to be of the form 

-;a$' = & k F ( T ) ,  (13) 

Nf,,+ (a2/2k2)  %9%foo = 0, foo = 0 (6 = 0 , l ) .  (14% b)  

where k is the eigenvalue associated with the problem 

Here N is the operator M with a/aCreplaced by d/dC. 
The eigenvalue problem (14) is of the classical Sturm-Liouville type, which is 

encountered in the inviscid analysis of steady centrifugal instability. By appealing 
to standard theorems on the subject, analysis of (14) leads to the classical Rayleigh 
theorem; i.e. the characteristic values k2 are all positive if the discriminant VoOVo 
is everywhere negative and vice versa. In the present case it follows that, provided 

v09vo < 0, (15) 
the growth rate at lowest order (i.e. the value of - iQ obtained from (13) with k equal 
to the most unstable characteristic value of (14) is given by the real function & I k I S ( 7 ) .  
Thus, if S ( 7 )  is a positive (negative) function, the soIution + ( k ( S ( 7 )  (- ( k I S ( 7 ) )  
corresponds to unstable perturbations. However, if S ( 7 )  has a zero at  7 = 5 the 
solutions branch at  that instant and the question follows of which branch is to be 
chosen. Rosenblat (1968) considered first the case of time dependence such that the 

S ( 7 )  d7 vanishes and chose the branch + lk12F(~) both for 7 > ;? and7 < 5. 

Such a choice led him to conclude that 'rigid body oscillations' (slowly varying 
periodic flows with zero mean) are always inviscidly stable within the framework of 
a linear theory. However, on a more careful examination, the above conclusion 
appears to be incorrect. 

In  fact, the choice of the proper branch cannot be made within the inviscid scheme. 
Indeed as 7 -+ 7, F(7) -+ 0. Assuming V(7) -+ 0 it follows that within a neighbourhood 
of 7 such that (7 - 51 - O(T-4) the centrifugal terms in (7) are of the same order as the 
viscous terms,'i.e. the full viscous problem (7) is to be considered. 

The viscous (inner) solution 

Let us rescale the time variable in the region 17 - 51 = O(T-4) by defining 

9- = T f ( 7 - 3 ,  Fn(F) = T ~ G , ( T ) .  
In  terms of-the inner variable F the differential system (7) reads 

u(") = v(w) = a u (v) / a [ =  0 ( 6 =  0, l ) ,  

where dW) and T-WV) denote the'functions u and v within the viscous region. 
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(rT4 -+ 0, (18) 

i.e. CT < T-4. Under these conditions the differential problem (17) is of the kind 
treated by Seminara & Hall (1975), i.e. the perturbations again vary rapidly with 
respect to the basic flow and a WKB type of approach can be employed with aT* as 
a small parameter. Further expansion of the leading-order WKB term in powers of cr 
leads to the following expression: 

On substituting from (19) into (17) we find a t  O ( d ' ) ,  

{ M  + iQ$(F)}  Mfo" - a2q)([) Fo(F) g; = 0, 

{N + i Q ; ( m }  9; - scgq), E",(F)fo" = 0, 

(20a)  

(2Ob) 

( 2 0 4  

where (u;, = 49)  (fov, s;), (21)  

fo" = g; = afo"/afS = 0 (5  = 0, l),  

with A v ( 7 )  an amplitude function whose contribution will be neglected at lowest order. 
Matching of the inner (viscous) solution and the outer (inviscid) solution requires 

(22)  lim (fX; F, a) ,  m5;  7, a ) )  = (foo(5; a) ,  goo(6; a) ) .  
Y-tf w 

Furthermore, since 
lim(-iQ$)(7)) = + k F ' ( ? ) ( 7 - ? ) ,  
7-G 

the further matching requirement 

lim I -iQ:(F)I = l k F ( ~ ) F l  
Y + f w  

(24)  

follows. Conditions (22)  and (24) will be proved in the next paragraph by considering 
the asymptotic form of the solution of system (20)  as F+ a. 

Coming to the crucial point of deciding the branch to be chosen at 7 = ?, we first 
notice an important feature of the differential system (20)  : at times Fl and F2 such that 
Fo(Fl) = - Fo(F2) it admits identical sets of eigenvalues, i.e. 

- i Q ; ( q )  = - iQt(.%), (25)  

( f o " 9  Sli).F., = (-feu, 9;1.F2 01 (fo, 9O).FI = (fo", -92i).T*. (26a,  b )  

as long as the: eigenfunctions satisfy either 

The former alternative (26a)  requires for continuity that f; should go through zero a t  
7 = 0, while the latter requires similar behaviour for go. Both alternatives correspond 
to possible solutions of the differential system (20) with Fo(F) = 0. 

The above feature of (20)  restricts the possible paths to the following two: - iR8) 
remains either non-negative or non-positive through ?. The choice between these 
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paths requires that the solutions of system (20) should be examined. It proves con- 
venient at this stage to refer to a particular cylindrical flow. 

3. Purely oscillatory slowly varying Taylor instability 
Let us consider basic flows such that 

8* = AX, c(<)Fn(7)P, 
n=O 

The relationships (27)-(29) give the basic velocity field produced in a viscous fluid by 
an inner cylinder performing harmonic oscillations about its axis with angular speed 
A when SIR, < 1 can be considered a valid approximation. The differential system 
governing the disturbed flow is still (7)  with T given by (8c),  V$ equal to RR, and - 

9 apt, M = a y a p  - a2. (3% b) 

The growth rate in the outer inviscid region is given by (13). The eigenrelation 
associated with the eigenvalue problem (14) with Yo given by (28a) is well known (see 
Chandrasekhar 1961, p. 290). We found it more convenient to solve the eigenvalue 
problem (14) numerically by means of a fourth-order Runge-Kutta integration 
scheme with 40 steps. The results obtained for the most unstable eigenrelation 
k = k(a2) confirm the known results. In particular k(1O) was found to be equal to 
0.368415. 

The (inner) viscous solution is governed by the differential system (20) with Yo and 
9 given by (%a, b) respectively, We obtained the asymptotic solutions of this 
system as F+ 0 and F+ & co. These asymptotic results were then extended by 
performing a numerical integration of system (20) in the range F = &lo3. 

Let us first examine the asymptotic behaviour of the solutions of system (20) as 
F + O .  One set of solutions is associated with each of the alternatives (26a, b) .  We 
consider the two sets separately. 

(i) The c u e  in which f ;  vanishes at 7 = 7.  The structure of the differential system (20) 
suggests that the following expansions hold for ' small ' F: 

fl = f&y + O(F3) ,  

Qg = Qt0 + Qg2Y2 + O(F4). 
gg = ggo + g g p +  0 ( 3 7 4 ) ,  

Substituting from (31) into (20) and equating terms O ( Y o )  gives 

(N+iQgo)ggo = 0, 

g;io = 0 (6 = 0 , l ) .  

Thus g& = sinm.;rr< (m = 1,2 ,3 ,  ...), (33) 

iQ& = a2+m2n2, (34) 

where the arbitrary constant in (33) has been put equal to one. 



On Rayleigh's criterion for slowly varying flows 553 

Substitution of (31) into (20) leads a t  0(9-) to the following inhomogeneous ordinary 
differential system for f& : 

( N  + ingo) Nf& = - a2K ggo, (35a) 

fZ1 = df&/dC = 0 ( 5  = 0 , l ) .  (35b) 

The solution of (35) can be written in the form 

f& = (a +pc) sin mnc+ (p+ A[ + vc2)  cosmnc+ 8sinh ac+e cosh a[, (36) 
where 

h = - {2pa( 1 + p2)}-l , p =  -(1+5p2)h2, V =  - 4 4  (37% b, c) 

a = h{ - (2ap) - l++ (1+5p2)h+7 /4p} ,  8 = - (h/a+pa) ( 3 7 6  e )  

p =  +h{-[a - l+(1+5p2)ph]~-$ ) ,  e =  -@, (37f9 9)  

and 
mn sinh a p = - ,  7 =  
a cosha- ( -  l )m' 

In  order to determine the 0 1 9 - 2 )  correction for the growth rate we need to examine 
the O ( P )  system obtained on substituting (31) into (20). We find 

qg2 = 0 ({= 0 , l ) .  (39b) 

One can readily show that a certain condition has to be satisfied for the above system 
to admit a solution. Since the homogeneous operator associated with (39a) is self- 
adjoint this solvability condition rea,ds 

Substituting from (32) and (36) into (40) and integrating, we find 

This expression shows that - iQ& is positive for any m and a. In  particular, for m = 1 
(the most unstable eigenvalue) and a2 = 10 we obtain 

(42) 

The sign of -in& suggests that the growth rate associated with the most unstable 
viscous solution of set (i) tends towards the positive branches of the inviscid growth 
rate at least for small (positive or negative) values of 9-. The numerical results to be 
discussed and the asymptotic solution of (20) for F-+ f co will indeed confirm that the 
above behaviour persists as increases. 

(ii) The case in which gg vanishes at r = 7. Let us now expand the solution of (20) 
in the form 

- in; = - 19.869604 + 0.006031F2 + O(y4) .  

f; =f&+.g2~2+o(9-4), ( 4 3 4  
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The O(9-O) system obtained after substituting (43a, b, c) into (20) reads 

{ N + i Q ~ o } N f &  = 0, (44 a) 

f& = df$/dc = 0 (5 = 0, 1). (44b) 

This eigenvalue problem was solved by Dolph 6 Lewis (1958), who found two sets 
of eigenvalues and associated eigenfunctions. The more unstable of these corresponds 
to even eigenfunctions and leads to  the following solutions of (44): 

(ingo), = a2 + 4xE, ( 4 5 4  

where xk is a root of the transcendental equation 

xk tan xk = - $a tanh +a, (46) 

and the arbitrary constant in (45b) has been put equal to 1. The second sets of eigen- 
values of (44) corresponds to oddeigenfunctions. These are given by 

(iQ&), = a2+ 4y;, (47a) 

sin Yk 

sinh *a 
( f&)o = sinyk(2g- 1) -- sinh&a(25- l), 

where Yk is a root of the transcendental equation 

tan yk - tanh *a --- 
Yk 4a * 

(47 b) 

We shall consider in the following only the even solutions (48). In fact they corres- 
pond to the more unstable disturbances at 9- = 0 and some numerical results to be 
presented show that this behaviour persists as F increases. 

Substitution of (43) into (20) leads at O ( F )  to the following inhomogeneous dif- 
ferential problem: 

{ N  + iQ:o> &l = tfL ( 4 9 4  

g& = 0 (5 = 0, l ) .  (49b) 

This system, with iQ& and f ,  given by (45a, b )  respectively, can be easily solved to 
give 

9211 = (2iQ&)-'cosxk(25- 1)-(16~kcosX~):,)-'sin 2xk5 

+ (8~~)-~gsinx,(25- 1) - (2~~0cosh4a)-1cosxkcosh4a(2~- 1) .  (50) 

The evaluation of the O(F2)  correction to in: requires that the procedure be 
continued to the next order. We find 

( N  + ingo) Nf,$ = ( -in&) Nf& - a2Vog&, ( 5 1 4  

f& = df&/d[ = O (5 = 0 , i ) .  (51 b) 

The solvability condition required for the system (51 a, b) to admit a solution defines 
- iQz2 in the form 

(52) 
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where use has been made of the self-adjointness of the homogeneous operator associated 
with (51a). Substituting from (45) and (50) into (52) and performing the integrations 
leads after much tedious algebra to 

In  the appendix we prove that --ifig2 is negative for any a. In  particular, the most 
unstable eigenvalue with a2 = 10 reads 

(54) 

The form of -in: suggests that the growth rate associated with the most unstable 
viscous solution of set (ii) tends, for small (positive or negative) values of 9, towards 
the negative branches of the inviscid growth rate. The numerical results presented 
below will show that this behaviour does not persist for large values of T. However 
the most unstable eigenvalue of set (ii) remains more stable than the most unstable 
eigenvalue of set (i), which is then the one relevant for our analysis. 

Vc'e now look for an asymptotic solution of (20) (with Yo and 9 given by (28a, b )  
respectively) as F-+ + 00. This analysis will allow the inner solution to be matched 
to the outer solution. Furthermore it will provide a useful check on the numerical 
results to be presented. 

Three flow regions can be distinguished as IF1 -+a: an inviscid (central) region 
where 5 = O( 1), an inner viscous layer adjacent to the inner wall where 5 = O( +S)-* 
and an outer viscous layer adjacent to the outer wall where 1 - 5 = O( +F)-*. (The 
+ sign corresponds to F 2 0.) Now for the set of branching points such that 
F ' ( F ) = + l  (?=&(4m-l )n ,  m = 0 , _ + 1 , + 2  ,... ), F,- .Fas  F-++m. Thus the 
structure of (20) and (26a) suggests that the variables be redefined in the central 
region in the form 

- ia,V = - 37.84172 - 0.005899849'-2 + O(F4) .  

Q;; = (+9'-)a, f; = +'P, g; = y. (55a, b, c) 

igN'P - a2( 1 - 5) y = - ( & 9'-)-1N2'P, (564 
i c y  + $9 = - ( f .Y ) - lNy  ( 5 6 b )  

(9, y ,  fl) = ('Po, yo, CrJ) + ( 'Pl,Yl, g1) ( +9'-)-)+ ('PZ,YZ, (12) ( kT) - l+  O( f-m. (57) 

On substituting (57) into (56) we find at leading order an eigenproblem for (90,cro) 
identical to (14) with % given by (28a) ,  f$J replaced by yo, and go replaced by ( f ik). 
The solution, 

corresponds to unstable disturbances for both positive and negative F. 
Before proceeding to higher-order approximations for the solution in the central 

region we need to consider the flow in the wall viscous layers. Let us rescale the 
variables in the inner viscous layer such that 

On substituting (55 )  into (20) we find the following differential problem for (q5, y, g): 

with suitable boundary conditions. Let us now expand ($, 7, u) in the form 

i ~ ,  = - k, 'Po =f& Yo = Q'PO, (58% b,  4 

6 = (+9'-)q-, f: = -t (+F)-*#, g; = (fY)-*r. (59% b, c) 
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Substitution of (59) into (20) gives 

{a2/a62+iu-a2( +F)-1}{a2/af12-a2( fY)-l}$ = ( fF)-la2{l - (fF)-lLJr, (60a) 

pya62 + ia - a2( 5 ~ ) - 1 }  r + +$ = 0, (Gob) 

(60c) 

As fl+ m (4, r) must behave such that the inner-layer solution matches the limiting 

(61) 

4 = a$/aE = r = o (6 = 0). 

form of the solution in the central region as <-+ 0. Let us expand 

(4, r) = ($o,  r,) + (A, r,) ( f n - 4  + o( f a - 1 .  

The leading-order problem for ($o ,  r,) is easily found from (61), (60) and (56) and reads 

(d2/dc2 - k) d2#,/df12 = 0, 

( d 2 / d t 2  - k) Po = - 8q50, 

$o = d$,/dt = ro = o (g = 0). 

This system is solved subject to the matching conditions for c-+ co. We find 

$0 = k-*(exp r - (k041- I} + fl ,  (63a) 

r0 = (2k$)-l{exp[-(kfl)*]- 1}+(2k)-1fl{1+0.5exp[-(kLJ)]}, (636) 

where exponentially increasing terms have been rejected and $o has been normalized 
such that (d$o/d<)c=o = 1.  The solution (63a) implies that in the central region 

# N g-k-*( + F ) - * + O (  &F)-' ( < + O ) .  (64) 

7 = ( f F ) 4 ( 1 - 6 ) ,  f l =  *(*F)-~$, 9: = ( f J  Q- 1 -4K (65 a, b, c )  

The flow in the outer viscous layer can be similarly studied after the rescaling 

and is governed by a differential problem identical to (60) with $ replaced by $, 
by K and { 1 - ( f F ) - 4  f l }  by ( f F)-*q. If we now expand ($, K )  in the form 

($, K )  = ($0, KO) + ($1, Kl) ( f F)-* + O( f Y)-l (66) 

the leading-order solution for ($o, KO)  is readily found to be identical to that for ($o,  r,) 
but with a factor D equal to ( - drpo/d~)c=l, which is required for the matching with the 
central-region solution. Thus it follows that 

$ N D ( l - l J - D k - * ( f Y ) - * + O ( + Y ) - l  ([+1). (67) 

Let us now return to the flow in the central region. If we equate terms O( kF)-*  
in (56) and use (64) and (67) we find 

'pl = - l/k* (6 = 0) ,  'pl = - D/ki (6 = I). (686, c )  

The above system admits a solution provided that the following condition is satisfied: 

which shows that -ial is negative for any value of a. The solution of (68) is unique 
but for an arbitrary multiple of the eigenfunction yo. However it will appear that 
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\ \  I 

-2 I 
FIGURE 1. The numerical results for the most unstable eigenvalues in the viscous region [solid 
curve ( i ) ]  are shown along with the results of the asymptotic analysis EIBF + 0 (dashed curve) and 
F + ? 00 (dotted curve) for a2 = 10. The unstable branches of the inviscid eigenvalue (a2 = 10) 
(dashed curve) are also shown in the viscous region along with the numerical results for the most 
unstable eigenvalues of the set (ii) with even (ii)e and odd (ii), eigenfunctions. 

this lack of uniqueness does not influence the solution for the growth rate a t  higher 
order. 

The above procedure can then be continued. The solution (69) for -ig, can be 
used to determine the flow in the viscous layers a t  second order. The limiting form 
of the latter a t  the edge of the layers determines the boundary conditions for the 
inviscid flow in the central region a t  third order. The solvability condition for the 
inhomogeneous differential problem found a t  this stage determines - iu,. For the 
sake of brevity we just give the main result of this analysis; the O(9-0) correction for 
the growth rate is found to be 

(ig1I2 + (igl) lo1%'p1'podp 
-~ 

a2 lo1 (6 Yn)2d[ 
--g, = -- lo, 6;: d5  

2k2 Io1%'p:d5 2k 

lcs B, + DB, + &kl k-l( 1 + D )  
a, 

-- 
' (70) 

where B, and B, are given by (drp1/d5),=, and (-drpl/d5)c,, respectively. By using 
(69) it can be shown that adding any multiple of yo to 'pl would affect both the third 

IO1 % v: d 5  
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FIGURE 2. The viscous eigenfunction f; normalized such that ( g ; ) r - i  = 1 is shown as a function 
of F for a2 = 10. The curve for F + 03 is the inviscid eigenfunction fg’. 

FIGURE 3. The viscous eigenfunction g,U normalized such that = 1 is shown as a function of 
F for a2 = 10. The curve f o r 9  + co is the inviscid eigenfunction gFJ. 
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-in; 

Asymptotic solution Numerical solution 191 
0 

0.1 
0.3 
0.5 

1 
5 

10 
20 
50 

- 19.86960 
- 19.86954 
- 19.86906 
- 19'86810 
- 19.86357 
- 19.7188 
- 19.2665 
- 17.4572 
- 4.7921 

- 19.86961 
- 19.86955 
- 19.86907 
- 19.86811 
- 19.86358 
- 19.7201 
- 19.2851 
- 17.7100 
- 10'0134 

TABLE 1. Comparison between numerical and asymptotic results as -+ 0 for the 
most unstable eigenvalue of set (i) (a8 = 10). 

-in; 
(..---A_ 7 

Asymptotic solution Numerical solution IF1 
50 - 12.992 - 10.013 

100 3.41 5.72 
300 71-68 73.77 
500 141.66 143.66 

3000 1023.1 1024-8 

TABLE 2. Comparison between numerical and asymptotic results a s 9  -+ k co for the 
most unstable eigenvalue of set (i) (aa = 10). 

and the fourth term of the right side of (70) in such a way that -iu2 would not be 
altered. 

The asymptotic analysis for large 19-1 developed above shows that the matching 
requirements (22) and (24) are met by the solution (55), (57) and (58) at leading order. 

The values of - ia, and - iu2 were calculated for a2 = 10. Using the eigenfunction 
'po (normalized as mentioned above) and the corresponding eigenvalue k, we evaluated 
- iu, from (69) numerically by means of Simpson's rule. Using the value of - iu, thus 
obtained, the inhomogeneous system (68) was solved by the method of linear com- 
binations (see Eagles 1971). A Runge-Kutta integration scheme with 40 steps was 
used to obtain each independent solution numerically. The solution for 'p, was finally 
used to evaluate - iu2 from (70). We found 

(-ill:) = 0.368415( &9-) - 0.72344( &Y)i - 26.297 + O( &9-)-* for a2 = 10. 

(71) 

The system (20) (with Yo given by ( 2 8 ~ ) )  F, = 9- and a2 = 10) was also solved 
numerically, again by means of the method of linear combinations and a Runge-Kutta 
integration scheme with 40 steps. The results for the most unstable eigenvalue - iG 
as a function of F in the interval - lo3 < 9- < 103 are shown in figure I. The agree- 
ment between the numerical solution and the asymptotic solutions for . T + O  and 
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-in; 
191 Asymptotic solution Numerical solution 

0 
0.3 
0.6 
0.8 

1 
5.1 

11.1 
15.1 
20 
40 

100 

- 37.84172 
- 37.84224 
- 37.84384 
- 37'84549 
- 37.84761 
- 37-99517 
- 38'56864 
- 39.18694 
- 40.20165 
- 47.28146 
- 96.84015 

-37.8419 
- 37'8424 
- 37'8440 
- 37.8457 
- 37.8478 
- 37.9941 
- 38.5415 
- 39'0993 
- 39.9553 
- 44.9443 
- 60.5240 

TABLE 3. Comparison between numerical and asymptotic results a s 9  + 0 for the 
most unstable eigenvalue of set (ii) (even eigenfunctions, az = 10). 

Y-+ & 00 appears to be satisfactory. Tables 1 and 2 below confirm this agreement 
in more detail. Figures 2 and 3 show the variation w i t h Y  of the viscous eigenfunctions 
(f:, 9:) along with the inviscid eigenfunctions ( f  ,$), g$). 

Figure I also shows the numerical results obtained for the most unstable eigenvalue 
corresponding to even eigenfunctions at F = 0 (see discussion of set (ii) above). It 
appears that the initial trend predicted by the asymptotic solution as F+ 0 [see (54)] 
and confirmed by the numerical results (see table 3) modifies sharply as IF1 increases. 
For large IF1 this eigenvalue becomes positive, remaining less unstable than the 
eigenvalue discussed previously. 

Similar results are shown in figure 1 for the most unstable eigenvalue of set (ii), 
corresponding to odd eigenfunctions. This confirms that the eigenvalue relevant for 
present purposes is the most unstable of the set corresponding to the condition (26a).  
The analysis performed above shows that as F-t+00 this eigenvalue matches the 
positive branches of the most unstable inviscid eigenvalue. 

4. Conclusions 
The analysis and the results discussed in $3 2 and 3 show that, in the inviscid limit, 

the linear stability of the class of flows considered in this paper depends on the sign 
of Vo9Vo. Thus Rayleigh's criterion has been extended to slowly varying flows, a t  
least in an asymptotic sense. In  view of (13) this conclusion is trivial for basic flows 
which do not reverse their direction. It requires more attention in cases where S(T) 
changes sign. The problem of deciding which branch of the growth rate is to be chosen 
at bifurcation requires the effect of viscosity to be accounted for within a conveniently 
small neighbourhood of the branch point. The proper branch is found to be that such 
that - iQ3' remains non-negative through the point 7. It is to be emphasized that the 
inviscid eigenfunction foe(<; a, 7) corresponding to such a choice of branch exhibits a 
jump discontinuity a t  7 = 7, which is smoothed out (see figure 2) when viscous effects 
are properly accounted for. The validity of the above results does not depend on 
the assumption F(?) + 0. The order n of the first non-vanishing derivative of 9 a t  
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7 = 7 determines the order of magnitude T-9, of the viscous region. Moreover the 
inequality u < T-9 becomes in general 

< T-tn. (72) 

Thus ‘rigid-body oscillations ’ appear to be always unstable provided that their 
spatial dependence is such that the criterion (15) is satisfied. Such a conclusion dis- 
agrees with that derived by Rosenblat (1968) and invalidates most of his results on 
the inviscid instability of more general unsteady cylinder flows. I n  particular, 
associating the inviscid centrifugal instability of flows which are periodic about a 
zero mean with the existence of a phase lag between velocity and vorticity does not 
appear to be a correct criterion. Under such conditions, a t  least for a slowly varying 
time dependence, the nature of the instability mechanism does not seem to be different 
from that which characterizes a steady basic state. The slow variation of the latter 
leads to only a slow variation of the disturbance growth (or decay) and the integrated 
effect over a period controls the stability of the basic configuration. 

A natural question that arises from the present results is whether it might be worth 
trying to extend Rayleigh’s criterion to unsteady basic flows which are not slowly 
varying in time. However under the latter conditions the time dependence of the 
basic flow is not separable in general from its spatial dependence. Thus Rayleigh’s 
criterion is likely to be satisfied within restricted portions of the flow domain which 
moreover vary relatively fast in time. The relevance of the criterion for such flow 
configurations does then appear to be dubious even though qualitative results (see 
Seminara & Hall 1976) referring to high frequency basic flows would tend to support 
its validity. Further work is required to make the latter arguments more convincing. 

The author acknowledges the suggestion of one of the referees that the asymptotic 
analysis for small Y should be performed in order to substantiate the numerical 
results. 

Appendix 
We now prove that the relationship (53) defines - iR& as a negative number for 

any (positive) value of a and xk such that (46) is satisfied. We denote Ithe terms in the 
braces on the right side of (53) by {I}, {2}, {3}, {4}, (5}, (6) respectively. 

I n  view of (46), tan xE/xi is negative. Moreover lxkl > 1,  whence 

7 tanx, 
(5)  > -512 > 0. 

Also, by inspection it follows that 

Since lsin 2Xk/x,\ < 1 we find 

Using the identity 

we can write 

(6) > 0. 

${1}+{2} > 0. 

sin3x = 3sinx-4sin3x, 

tan xk 3 tanxk 
(3-4sin2xk) > - - 

512 x; ’ 
19 F L M  91 
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whence 
{a} + 3{5} > 0. 

Finally if Itanxk/xkl > xi2 it follows that 

3{5} + (3) > 0. 

*{1} + (3) > 0. 

(A 6) 

If Itanxk/xkl < xk2 then, from (46), a is found to be less than 2. Thus +{l} is greater 
than;& and 

The inequalities (A2), (A 3), (A 5), (A 6) and (A 7) prove our statement. 

(A 7) 
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